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Simulation of Turbine Tone Noise Generation Using a 
Turbomachinery Aerodynamics Solver 

 
Dale Van Zante and Edmane Envia 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

Abstract 

As turbofan engine bypass ratios continue to increase, the contribution of the turbine to the engine 
noise signature is receiving more attention. Understanding the relative importance of the various turbine 
noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential 
ingredients in developing robust reduced-order models for predicting the turbine noise signature. A 
computationally based investigation has been undertaken to help guide the development of a turbine noise 
prediction capability that does not rely on empiricism. As proof-of-concept for this approach, two highly 
detailed numerical simulations of the unsteady flow field inside the first stage of a modern high-pressure 
turbine were carried out. The simulations were computed using TURBO, which is an unsteady Reynolds-
Averaged Navier-Stokes code capable of multi-stage simulations. Spectral and modal analysis of the 
unsteady pressure data from the numerical simulation of the turbine stage show a circumferential modal 
distribution that is consistent with the Tyler-Sofrin rule. Within the high-pressure turbine, the interaction 
of velocity, pressure and temperature fluctuations with the downstream blade rows are all possible tone 
noise source mechanisms. We have taken the initial step in determining the source strength hierarchy by 
artificially reducing the level of temperature fluctuations in the turbine flowfield. This was accomplished 
by changing the vane cooling flow temperature in order to mitigate the vane thermal wake in the second 
of the two simulations. The results indicated that, despite a dramatic change in the vane cooling flow, the 
computed modal levels changed very little indicating that the contribution of temperature fluctuations to 
the overall pressure field is rather small compared with the viscous and potential field interaction 
mechanisms. 

Introduction 

The noise signature of a contemporary turbofan engine is comprised of an amalgam of different noise 
sources, the turbine component being just one of those sources. The turbine noise is always discernible in 
the overall engine noise signature and its relative importance has been on the rise with the advent of the 
ultra high bypass ratio engines. Several turbine noise prediction models were developed in the 1960s and 
1970s, but these are all empirically based and rely exclusively on steady state turbine operating 
parameters as their input. Consequently, these models are highly “tuned” to the engine data on which they 
are based and are not very robust at predicting the noise from significantly different turbine designs. 
Mathews, et al. (Ref. 1) have presented an overview of these models and have defined the requirements 
for more physics-based turbine advanced prediction methods. 

Noise from turbines became of interest at the end of the 1960s and design rules were developed to 
mitigate the turbine noise problem of 1970s and 1980s vintage engines. As bypass ratios increased in 
1990s vintage engine designs, and improved fan and jet noise reduction strategies were developed, the fan 
and jet noise contributions started to become less dominant. At the same time, shifting turbine design 
paradigms started a push toward lower blade counts and higher loading per stage. These design trends 
have increased the relative significance of turbine noise making it a more important part of the total 
engine noise signature. In the meantime, turbine noise prediction methods have not improved 
significantly and thus the current predicament where turbines are getting noisier in both their relative  
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contribution and absolute level, but yet there are no reliable tools to predict turbine noise early in the 
design process (Ref. 2). With the introduction of ultra high bypass ratio engines, the accurate prediction 
of turbine noise has become even more important (Ref. 3). 

To improve upon, and even move beyond empirical models, the turbine noise generation and 
propagation processes must be better characterized. Acquiring the necessary detailed flowfield 
measurements to do this is quite difficult due to the harsh environment that turbines operate in. One 
possible alternative to direct measurements is the use of highly detailed numerical simulations that may 
provide the necessary information for the development of new physics-based reduced order turbine noise 
prediction models. 

Under the auspices of the Fundamental Aeronautics Subsonic Fixed Wing Project, NASA is currently 
funding core noise research focused on the generation and propagation mechanisms of combustor and 
turbine noise in the combustor-turbine-nozzle system as shown in Figure 1. This research effort is 
comprised of four elements. The first is a combustor noise Large Eddy Simulation work that is funded by 
NASA and carried out at Stanford University (Ref. 4) to characterize the temporal and spatial non- 
uniformities at the combustor exit plane (i.e., Station 4). The second element of this core noise research 
effort will use the results from the combustor simulations as an inlet boundary condition for a high-
pressure turbine (HPT) research investigation focused on the influence of combustor-turbine coupling on 
core noise generation. In the third element, which is the subject of this paper, simulations of the HPT with 
time-steady, circumferentially uniform inlet conditions have been underway in order to better characterize 
the tone noise generation mechanisms and their relative hierarchy. The fourth and final element of the 
core noise research effort will use the result of the HPT simulation work to serve as the inlet conditions 
for a low-pressure turbine (LPT) noise simulation study. This so-called inlet condition will naturally 
include any residual acoustic, vortical or entropic non-uniformity from the HPT that may persist through 
the last stage of the HPT. A detailed simulation of the LPT will be used to determine tone generation and 
propagation through the LPT and out the core nozzle exit plane. Ultimately, these four elements working 
in concert should provide a realistic end-to-end analysis of the combustor-turbine-nozzle subsystem and 
aid in the development of physics based models for turbine noise. 

The initial step in the third element of this research effort is a proof-of-concept demonstration of the 
utility of the TURBO (Ref. 5) code to properly account for the essentials of the turbine tone noise 
generation physics. TURBO is an implicit, unsteady, multi-stage, Reynolds-averaged, Navier-Stokes, 
turbomachinery solver usually employed for detailed aerodynamic (i.e., performance) simulations of 
multi-stage turbomachinery. There are two objectives to this study. The first is to demonstrate that 
TURBO is a viable solver for this work and the second is to provide the LPT inflow plane boundary 
information. 
 

 
 

Figure 1.—Notional combustor-turbine section of a turbofan engine showing station numbering (left). 
The combustor and turbine flow path (right) from Reference 6. 
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In what follows, the simulation setup is described followed by presentation of representative results 
from the simulated HPT turbine stage flowfields. Next the spectral/modal analysis of unsteady pressure 
extracted from the simulations. 

Nomenclature 

m  Circumferential mode 
SPL Sound Pressure Level, dB 
W  Mainstream flow rate, non-dimensional 
X  Non-dimensional axial location 
  Blade rotational speed, rpm 
4  subscript, turbine inlet plane 
41  subscript, rotor inlet plane 
2  subscript, stage exit plane 

Background and Simulation Setup 

The TURBO solver is 3rd order accurate in space, 2nd order accurate in time, and uses double 
precision variables internally. The computational mesh was constructed such that the 2xBPF frequency 
content would propagate accurately within the domain. For a 2nd order solver generally accepted practice 
requires 40 nodes per wavelength thus resulting in meshes that have 10 times the node count of typical 
aerodynamics meshes (Ref. 7). 

The vane and blade airfoil counts were chosen so that 1/8th of the annulus is the geometrically 
periodic sector. The sector airfoil count is 5 vanes and 8 blades, which results in a 40-vane/64-blade stage 
which is representative of modern HPT designs. There are 200 nodes along each of the vane and blade 
chords with 100 nodes in the radial direction. The circumferential node counts are 208 per passage for the 
vane and 130 per passage for the blade. As a result, the sector domain as a whole contains 80 million 
nodes. A modified k- turbulence model with wall functions was used (Ref. 8). 

The tangential surfaces are periodicity boundary conditions as shown in Figure 2. The inlet and exit 
planes are locally 1–D non-reflecting boundary conditions. The mesh is stretched in the axial direction 
approaching the boundaries to damp oscillations and minimize the possibility of spurious reflections. The 
inlet boundary condition is comprised of a radial profile of total pressure and total temperature, but 
properties are taken to be uniform in the circumferential direction. A sliding mesh interface transmits 
information between the blade rows. Cooling flows on the blades, vanes, hub, and casing are included in 
the simulations as source terms at the blade/vane surface nodes. 

To achieve stable and robust simulations, 300 iterations per blade passing period were used. This time 
step and mesh size yield maximum CFL numbers at the airfoil surfaces of ~15. The simulations were 
considered converged when the adiabatic efficiency did not vary outside of a band 0.15 points (0.01 = 
1 percent = 1 point) wide. A performance summary for the turbine stage is given in Table 1. By running 
the simulation further, time histories of static pressure were extracted from the simulation at planes 1/2 
rotor chord distance upstream of the vane, at the upstream and downstream sides of the sliding interface, 
and downstream of the rotor. See Figure 2. The flow field was sampled every 10 iterations which gives an 
effective sampling rate of 365.1 kHz. The blade passing frequency is 11.1 kHz. To achieve a sufficiently 
resolved FFT, 16 blade passings of time data were acquired to compute spectral content. Note that the 
geometric period would be 8 blade passings. 

Two different simulations of the HPT stage were carried out, one with a nominal cooling flow for 
both vane and blade, and a second one in which the temperature of the vane cooling flow was radically 
altered in order to mitigate the vane thermal wake. For Case 1, the cooling flow temperatures were set to 
their nominal design values. In Case 2, the cooling flow temperatures of the vane were set to free stream  
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Figure 2.—The simulation domain showing boundary conditions 
and analysis plane locations. 

 
 

TABLE 1.—TURBINE STAGE PERFORMANCE SUMMARY 
 Case 1 

(cooled) 
Case 2 

(uncooled) 
Rotor inlet mass flow W41, normalized to Case 1 1.00 0.97 
Pressure ratio, PT,4/PT,2 2.37 2.36 
Temperature ratio, TT,4/TT,2 1.31 1.24 
Nominal vane inlet abs. Mach no. 0.1 
Nominal vane exit abs. Mach no. 0.9 

 
 
total temperature value at mid-span and mid-pitch. The mass flow rate of cooling flow was the same in 
both cases with only the cooling flow temperature having been changed. This was intended to greatly 
reduce the temperature deficit in the vane wake while leaving the velocity deficit relatively unchanged. 

Simulation Results 

The flow field inside the vane-blade gap contains sizable velocity, pressure and temperature 
fluctuations. All three of these can produce tone noise when interacting with blades and vanes. Figures 3 and 
4 show an instantaneous view of the temperature fields for Cases 1 and 2 at mid span. Note the film of cold 
fluid that bathes the vane surface in Case 1 and then forms a cold wake, which is cut by the blades. Note 
also that the vane wake develops an instability for this case. For Case 2, the free stream to wake temperature 
difference is much reduced as a result of using the “hot” cooling flow. The influence of the blade potential 
field and the velocity gradients in the blade passage are evident in the distortion of the wake. 
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Figure 3.—Instantaneous view of static temperature on a 50 percent span surface for the cooled 

turbine, Case 1. The color scales are identical for both Figures 3 and 4. Flow is from bottom to 
top. Rotor blade rotation is right to left. 

 

 
Figure 4.—Instantaneous view of static temperature on a 50 percent 

span surface for the “hot” cooling flow, Case 2. 
 

Figure 5 shows an instantaneous view of the absolute velocity, static temperature and static pressure 
variation through the vane wake at 107 percent vane axial chord as shown in Figure 3. For reference, the 
vane-rotor gap is only 29 percent of vane axial chord at midspan. The wake-to-wake variation is primarily 
due to the potential field effect of the blades and secondarily to the instability that the Case 1 wake 
displays. Because these effects are so pronounced, a time average is not a suitable representation of wake 
width and depth. Thus, an instantaneous view is used and the wake interrogation plane is located close to 
the vane trailing edge where maximum non-uniformity could be expected. The velocity wake shown in 
Figure 5(a) has approximately 40 percent depth for Case 1 and somewhat less, approximately 30 percent, 
for Case 2. The change in the velocity wake is due to a coupling of the flow thermodynamic properties 
and a change in the cooling flow velocities because of the hot cooling fluid in Case 2. 

The change in static temperature through the vane wake, i.e., the thermal wake, is shown in part (c) of 
Figure 5. The thermal wake for the nominal case is approximately 33 percent deep, which means the 
wake minimum is several hundred degrees Rankine below the free stream temperature. For Case 2, the 
thermal wake has been “filled” to a depth of approximately 6 percent, which is an 80 percent reduction in 
the thermal wake depth. For completeness the static pressure variation are shown in part (b). The peak-to-
peak spatial variation of static pressure is approximately 4 atm.  

This is a combination of vane trailing edge base pressure, blade potential field and pressure variations 
due to the cooling flow injection at the vane trailing edge. 

Rotor 
blades 

Stator 
vanes 

wake 
profile 
location, 
Fig. 5 
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Figure 5.—Instantaneous view across the sector pitch of the vane wakes for 

Cases 1 and 2: (a) Absolute velocity, (b) Static pressure, and (c) Static 
temperature at mid-span, axial location X = 1.4024. Black lines: cooled 
turbine, Case 1. Red lines: uncooled turbine, Case 2. 

Analysis of Unsteady Pressure Field 

Time resolved static pressure was extracted from the flowfields at planes throughout the solution 
domain as shown in Figure 2. Representative pressure traces are shown in Figure 6 for a position at mid-
span and mid-pitch located upstream of the vane at station X = 1.3220, and in the vane-blade gap at 
station X = 1.4060. Note the 45-fold change in scale for the unsteady pressure amplitude upstream of the 
vane compared to the pressure amplitude in the vane-blade gap region. The pressure trace from the 
upstream location is also superimposed in red on the vane-blade gap trace for comparison. The 
fundamental period of the pressure signature is the blade-passing period. Figure 6(c) shows the ensemble 
average pressure trace for one rotor-passing period for comparison. 

Modal Analysis 

The time series data are reduced by spectral and modal analyses to determine the modes present at the 
various axial locations in the turbine. Figure 7 shows the modal results for the vane inlet axial location 
X = 1.3220, 50 percent span, for the 1x, 2x and 3xBPF frequency tones for the cooled turbine (Case 1). 
Table 2 tabulates the most significant circumferential modes which are also the expected Tyler-Sofrin 
modes following the nB  kV rule. The peak mode level for 1xBPF is 140.5 dB for m = –16. The second 
most significant mode at 1xBPF is m = +24 at 129.8 dB. The other 1xBPF modes, not following the 

a 

b 

c 
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Tyler-Sofrin rule, are all 30 dB or more below the peak mode level. Therefore, all of the significant 
modes present are consistent with the Tyler-Sofrin selection rule. Furthermore, the rotor locked mode 
(m = +64), which decays exponentially with axial distance from the rotor, is not present at the vane inlet. 
Then, arguably, in a region where the pressure variations should be acoustic in nature, the TURBO code 
appears to be resolving the acoustic aspects of the flow correctly on the fine grid used in this study. This 
assertion will need to be confirmed in detail with phase speed calculations at a future time.  

 

Figure 6.—Static pressure time traces at mid-span, mid-pitch (a) upstream of the vane (X = 1.3220) and (b) 
in the vane-blade gap (X = 1.4060). The red trace in (b) is the upstream pressure trace. Part (c) shows the 
ensemble average static pressure based on the rotor-passing period. 

 

Figure 7.—Circumferential mode content at the vane inlet analysis plane, mid-span (X = 1.3220). 
The light blue bars are modes that are not allowed by the Tyler-Sofrin rule. 

 
TABLE 2.—MODES PRESENT AT THE VANE INLET ANALYSIS PLANE X = 1.3220, 50 PERCENT SPAN 

Frequency Circumferential mode index m from the simulation Allowable Tyler-Sofrin mode index m 
1xBPF –16, +24 …,–96, –56, –16,+24,+64,+104,+144,… 
2xBPF –72, –32, +8, +48 …,–112, –72, –32,+8,+48,+88,+128,… 
3xBPF –48, –8, +32 …,–88, –48, –8,+32,+72,+112,+152,+192,… 

a 

b 
c
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Figure 8.—Circumferential mode content in the vane-blade gap, mid-span (X = 1.4060). 
 

 
 

Figure 8 shows the circumferential mode content in the vane-blade gap. There are many more modes 
present in the vane-blade gap and the pressure fluctuations cannot be considered acoustic a priori. In fact, 
since the analysis plane is now within the potential field of the rotor, the pressure fluctuations are likely a 
combination of both hydrodynamic and acoustic contributions. This is evident because the peak mode at 
1xBPF is the rotor locked mode (m = +64) at 176.9 dB is far higher than typical acoustic levels. The next 
most significant mode at 1xBPF is m = +24 at 170.5 dB which is also non-acoustic. All circumferential 
modes present are allowed by the Tyler-Sofrin relationship thus implying a vane-blade interaction 
mechanism is responsible. 

In Figures 7 and 8 the circumferential mode content for a specific axial and radial location are shown. 
The radial variations of modes m = +64, +24, and –16 are plotted in Figure 9 for an axial location 
X = 1.4036 in the vane-blade gap. The rotor locked mode (m = +64) shows reduced amplitude with 
increasing radius because the blade leading edge is effectively swept back 3.5 axially. That is, the 
blade leading edge is further from the constant axial location analysis plane at the tip than at the hub. 
The m = +24 mode has the characteristics of a propagating mode.  

The mode m = –16 in Figure 9 shows an unusual behavior in the radial direction. As will be shown 
next, it also shows unusual behavior with axial distance from the blade leading edge. A satisfactory 
explanation for this anomalous behavior has proved elusive so far and will be pursued and addressed in a 
future paper. The behavior of these modes with axial distance at mid-span, including the impact of 
changes in the thermal wake depth, is shown next. 

The description so far was focused on modal description of the pressure field. For the sake of 
comparison, in Figures 10 and 11, the circumferential mode content of the velocity field is shown. 
Figure 10 shows the velocity mode distribution upstream of the vane and Figure 11 the mode content in 
the vane-blade gap. The amplitude of the velocity fluctuation is expressed in dB using a reference 
velocity of 10–9 m/s. An examination of these two figures clearly shows that the dominant modes in the 
velocity field are also consistent with the Tyler-Sofrin selection rule and mirror those in the pressure field. 
Like the pressure field, the velocity field likely includes both hydrodynamic and acoustic contributions. 
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Figure 9.—Radial variation of m = –16, m = +24, and m = +64 at mid-span, axial station X = 
1.4036. Solid lines are Case 1 (cooled turbine) and dashed lines are Case 2 (uncooled turbine). 

 
 

 
Figure 10.—Circumferential mode content of the velocity field at the vane inlet analysis plane, mid-span 

(X = 1.3220). 
 
 

TIP 

HUB 
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Figure 11.—Circumferential mode content of the velocity field vane-blade gap, mid-span (X = 1.4060). 
 
 

TABLE 3.—CIRCUMFERENTIAL MODES AT MID-SPAN FOR 1XBPF IN 
THE VANE-BLADE GAP FOR CASES 1 AND 2 

 Case 1 Case 2 
X m = +64 m = +24 m = –16 m = –56 m = +64 m = +24 m = –16 m = –56 

1.4012 171.7 170.6 168.2 165.2 171.8 169.2 166.7 164.2 
1.4036 174.2 170.7 163.2 165.2 174.4 169.3 162.4 163.9 
1.4060 176.9 170.5 154.0 164.9 177.3 169.2 156.0 163.4 
1.4081 179.3 169.4 154.7 165.3 179.8 168.4 153.5 164.0 
1.4097 181.1 168.2 162.5 165.6 181.8 167.6 160.7 164.2 
1.4113 183.0 168.2 165.9 165.4 183.8 167.2 164.2 164.2 

Thermal Wake Effects 

Table 3 compares the 1xBPF tone amplitudes in the vane-blade gap for Cases 1 and 2. The axial 
variation of the modes within the vane-blade gap is shown in Figure 12. The rotor locked mode (m = +64) 
decays rapidly with axial distance from the blade leading edge as would be expected for the potential field 
of an airfoil. The mode m = +24 has characteristics reminiscent of a propagating acoustic mode. The 
mode m = –16 decreases then increases substantially in SPL with axial distance from the blade leading 
edge. This behavior, along with the unusual radial shape, is not yet fully understood. 

For Case 2, where the thermal wake depth was reduced, SPLs for the modes shown are reduced 
uniformly by approximately 1.5 dB. This level change is due in part to the reduction of the velocity wake 
depth. The results indicate that the thermal wake is not a significant factor in noise generation compared 
with the vortical and potential field mechanisms. In future work the source term capabilities of TURBO 
will be used to “fill in” the velocity deficit of the vane wake and separate the vortical and potential field 
influences on tone noise production. 
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Figure 12.—Circumferential mode amplitude variation with axial location at mid-span in the vane-
blade gap. Solid lines correspond to the results for Case 1 (cooled) and dashed lines 
correspond to Case 2 (uncooled). The blue lines indicate the axial locations of the vane trailing 
edge and blade leading edge. 

Summary 

TURBO code simulations of a high-pressure turbine stage have been used to demonstrate the utility 
of such a tool for determining turbine tone noise generation. Spectral and modal analyses of the time-
resolved static pressure fluctuations from the simulations shows modes that are consistent with the Tyler-
Sofrin mode selection rule. While the modes show some familiar characteristics of acoustic modes, 
additional analysis is needed to establish their true character. The high-pressure turbine has three possible 
tone noise generation source mechanisms: velocity (or vorticity) wakes, temperature (or entropic) wakes, 
and potential field interacting with blades and vanes. It was shown in this paper that an 80 percent 
reduction in the temperature wake depth resulted in only 1.5 dB reduction of interaction mode SPLs. 
Given that part of the reduction is due to a decrease of the velocity wake depth, it is clear that, in the 
absence combustor outflow non-uniformity, entropic fluctuations, are not as effective a source of noise 
generation as are the vortical and potential field interaction mechanisms. Work is underway to separate 
the vortical and potential field influences on tone noise generation. 
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